Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Vaccine ; 42(7): 1785-1792, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38365484

RESUMO

Plasmodium vivax malaria is increasingly recognized as a major global health problem and the socio-economic impact of P.vivax-induced burden is huge. Vaccine development against P. vivax malaria has been hampered by the lack of an in vitro culture system and poor access to P. vivax sporozoites. The recent generation of Plasmodium falciparum parasites that express a functional P. vivax AMA1 molecule has provided a platform for in vitro evaluation of PvAMA1 as a potential blood stage vaccine. Three so-called PvAMA1 Diversity Covering (DiCo) proteins were designed to assess their potential to induce a functional and broad humoral immune response to the polymorphic PvAMA1 molecule. Rabbits were immunized with the mixture of three, Pichia-produced, PvAMA1 DiCo proteins, as well as with 2 naturally occurring PvAMA1 alleles. For these three groups, the experimental adjuvant raffinose fatty acid sulfate ester (RFASE) was used, while in a fourth group the purified main mono-esterified constituent (RSL10) of this adjuvant was used. Animals immunized with the mixture of the three PvAMA1 DiCo proteins in RFASE showed high anti-PvAMA1 antibody titers against three naturally occurring PvAMA1variants while also high growth-inhibitory capacity was observed against P. falciparum parasites expressing PvAMA1. This supports further clinical development of the PvAMA1 DiCo mixture as a potential malaria vaccine. However, as the single allele PvAMA1 SalI-group showed similar characteristics in antibody titer and inhibition levels as the PvAMA1 DiCo mixture-group, this raises the question whether a mixture is really necessary to overcome the polymorphism in the vaccine candidate. RFASE induced strong humoral responses, as did the animals immunized with the purified component, RSL10. This suggests that RSL10 is the active ingredient. However, one of the RSL10-immunized animal showed a delayed response, necessitating further research into the clinical development of RSL10.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Parasitos , Animais , Coelhos , Proteínas de Protozoários/genética , Plasmodium vivax , Rafinose , Sulfatos , Proteínas de Membrana/genética , Antígenos de Protozoários/genética , Adjuvantes Imunológicos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Malária Vivax/prevenção & controle , Anticorpos Antiprotozoários
2.
NPJ Vaccines ; 7(1): 126, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302860

RESUMO

Vaccine development for Plasmodium vivax, an important human relapsing malaria, is lagging behind. In the case of the most deadly human malaria P. falciparum, unprecedented high levels of protection have been obtained by immunization with live sporozoites under accompanying chemoprophylaxis, which prevents the onset of blood-stage malaria. Such an approach has not been fully evaluated for relapsing malaria. Here, in the P. cynomolgi-rhesus macaque model for relapsing malaria, we employ the parasites' natural relapsing phenotype to self-boost the immune response against liver-stage parasites, following a single-shot high-dose live sporozoite vaccination. This approach resulted in sterile protection against homologous sporozoite challenge in three out of four animals in the group that was also exposed for several days to blood stages during primary infection and relapses. One out of four animals in the group that received continuous chemoprophylaxis to abort blood-stage exposure was also protected from sporozoite challenge. Although obtained in a small number of animals as part of a Proof-of-Concept study, these results suggest that limited blood-stage parasite exposure may augment protection in this model. We anticipate our data are a starting point for further research into correlates of protection and extrapolation of the single-shot approach to develop efficacious malaria vaccines against relapsing human malaria.

3.
NPJ Vaccines ; 6(1): 55, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854065

RESUMO

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. PfAMA1's polymorphic nature impacts vaccine-induced protection. To address polymorphism, three Diversity Covering (DiCo) protein sequences were designed and tested in a staggered phase Ia/b trial. A cohort of malaria-naive adults received PfAMA1-DiCo adjuvanted with Alhydrogel® or GLA-SE and a cohort of malaria-exposed adults received placebo or GLA-SE adjuvanted PfAMA1 DiCo at weeks 0, 4 and 26. IgG and GIA levels measured 4 weeks after the third vaccination are similar in malaria-naive volunteers and placebo-immunised malaria-exposed adults, and have a similar breadth. Vaccination of malaria-exposed adults results in significant antibody level increases to the DiCo variants, but not to naturally occurring PfAMA1 variants. Moreover, GIA levels do not increase following vaccination. Future research will need to focus on stronger adjuvants and/or adapted vaccination regimens, to induce potentially protective responses in the target group of the vaccine.

4.
Vaccine ; 38(17): 3305-3312, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32197924

RESUMO

Dengue fever is one of the most wide-spread vector-borne diseases in the world. Although dengue-associated mortality is low, morbidity and economic impact are high. Current licensed vaccines are limited and mediate only partial protection, thus a cost-effective vaccine with improved efficacy is strongly needed. In this work, recombinant dengue serotype 1 E protein was produced in E. coli, inclusion bodies were isolated and the E protein solubilized in urea and purified using an immobilized metal chelate affinity column. The protein was refolded by dialysis in order to obtain virus-like particles (VLPs). Particle assembly was confirmed using size-exclusion chromatography, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy and stimulated emission depletion fluorescence (STED) microscopy. Particle diameter was strongly dependent on temperature, pH, buffer salt composition, and addition of L-arginine. Particles were stable in carbonate buffer at pH 9.5 and higher at 4 °C and did not aggregate during short-term temperature increase up to 55 °C. However, on basis of the above analyses, especially the results of DLS, TEM and STED, it was concluded that the particles obtained did not have an optimal virus-like structure and were therefore designated "virus-sized particles" (VSPs) rather than VLPs. Immunization of rabbits with the particles did not induce neutralizing antibodies, despite the recognition of the native virus by rabbit antibodies. As the titers against the immunogen were much higher than against the (heat-inactivated) virus, it is assumed that the conformation of the particles at the time of immunization was not optimal. Studies are currently underway to improve the quality of the E protein virus-sized particles towards true virus-like particles in order to optimize its potential as a dengue vaccine candidate.


Assuntos
Vacinas contra Dengue/biossíntese , Escherichia coli/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas do Envelope Viral/biossíntese , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Coelhos , Proteínas Recombinantes/biossíntese
5.
BMC Immunol ; 20(1): 25, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362695

RESUMO

BACKGROUND: In this study, seven adjuvants were compared for use with Plasmodium falciparum DiCo-Apical Membrane Antigen 1 (Pf-DiCo-AMA1), with the aim to identify an ideal adjuvant which yields high antibody titres and potentially broadens the responses in clinical trials. The following adjuvant formulations were evaluated: SE, SE-GLA, Liposomes, Liposomes-GLA, CoVaccine HT™, ImSaVac-P and ImSaVac-P o/w. The study was performed in rabbits, which were immunized with FVO-AMA1 in combination with one of the seven adjuvants. Antibody levels (humoral responses) and functional activity of the antibodies induced against malaria vaccine candidate AMA1 were evaluated. Thus, in this study the ideal adjuvant is expected to induce high functional antibody levels, a long-lived response, and a broad cross-strain activity. RESULTS: AMA1 formulated in all adjuvants was immunogenic. However, the magnitude of the immune responses differed between the seven adjuvants. The highest IgG levels were observed for the CoVaccine HT™ group, this was statistically significant for all four AMA1 variants versus all other adjuvant groups. No differences were observed in the breadth of the humoral response, i.e., increased recognition of AMA1 variants. Also, Growth Inhibition Activity (GIA) for both Plasmodium falciparum strains (FCR3 - homologous to FVO AMA1 protein and NF54 - heterologous to FVO AMA1 protein) were significantly higher in the CoVaccine HT™ group as compared to the other adjuvant groups. CONCLUSIONS: In brief, all seven vaccine - adjuvant formulations were immunogenic. The magnitude of the immune responses differed between the seven adjuvants. No statistically significant differences were observed in the breadth of the humoral response, nor in longevity of the response. Nevertheless, AMA1 formulated in CoVaccine HT™ appeared as the best adjuvant for use in clinical trials.


Assuntos
Adjuvantes Imunológicos , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Modelos Animais de Doenças , Imunização , Imunoglobulina G/imunologia , Vacinas Antimaláricas/administração & dosagem , Coelhos
6.
Biochemistry ; 58(6): 763-775, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30513201

RESUMO

Multiple sclerosis (MS) is an autoimmune disorder manifested via chronic inflammation, demyelination, and neurodegeneration inside the central nervous system. The progressive phase of MS is characterized by neurodegeneration, but unlike classical neurodegenerative diseases, amyloid-like aggregation of self-proteins has not been documented. There is evidence that citrullination protects an immunodominant peptide of human myelin oligodendrocyte glycoprotein (MOG34-56) against destructive processing in Epstein-Barr virus-infected B-lymphocytes (EBV-BLCs) in marmosets and causes exacerbation of ongoing MS-like encephalopathies in mice. Here we collected evidence that citrullination of MOG can also lead to amyloid-like behavior shifting the disease pathogenesis toward neurodegeneration. We observed that an immunodominant MOG peptide, MOG35-55, displays amyloid-like behavior upon site-specific citrullination at positions 41, 46, and/or 52. These amyloid aggregates are shown to be toxic to the EBV-BLCs and to dendritic cells at concentrations favored for antigen presentation, suggesting a role of amyloid-like aggregation in the pathogenesis of progressive MS.


Assuntos
Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Linfócitos B/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Amiloide/imunologia , Amiloide/toxicidade , Proteínas Amiloidogênicas/síntese química , Proteínas Amiloidogênicas/imunologia , Proteínas Amiloidogênicas/toxicidade , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/virologia , Benzotiazóis/química , Callithrix , Linhagem Celular , Citrulinação/imunologia , Células Dendríticas/metabolismo , Herpesvirus Humano 4 , Humanos , Camundongos Endogâmicos C57BL , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Crônica Progressiva/virologia , Glicoproteína Mielina-Oligodendrócito/síntese química , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Agregação Patológica de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Elife ; 72018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30589413

RESUMO

Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al., 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.


Assuntos
Perfilação da Expressão Gênica , Fígado/parasitologia , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium cynomolgi/genética , Animais , Primatas , Fatores de Tempo
8.
Expert Rev Vaccines ; 17(1): 13-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29224404

RESUMO

INTRODUCTION: Polymorphism in vaccine antigens poses major challenges to vaccinologists. The Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) poses such a challenge. We found that immunization with a mixture of three variants yielded functional antibody levels to all variants comparable to levels induced by monovalent immunization. The mechanism behind the observed broadening was shown to be an increase in the fraction of cross-reactive antibodies, most likely because strain-specific epitopes are present at lower frequency relative to conserved epitopes. Areas covered: We hereby introduce the Epitope Dilution Phenomenon (EDiP) as a practical strategy for the induction of broad, cross-variant antibody responses against polymorphic antigens and discuss the utility and applicability of this phenomenon for the development of vaccines against polymorphic antigens of pathogens like Influenza, HIV, Dengue and Plasmodium. Expert commentary: EDiP can be used to broaden antibody responses by immunizing with a mixture of at least 3 antigenic variants, where the variants included can differ, yet yield broadened responses.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Variação Antigênica , Antígenos de Protozoários/imunologia , Epitopos , Humanos , Imunização , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/imunologia
9.
Elife ; 62017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215331

RESUMO

Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.


Assuntos
Perfilação da Expressão Gênica , Fígado/parasitologia , Macaca mulatta/parasitologia , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium cynomolgi/genética , Esquizontes/crescimento & desenvolvimento , Esquizontes/genética , Animais , Feminino , Masculino
10.
PLoS One ; 12(9): e0185303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945794

RESUMO

INTRODUCTION: Plasmodium falciparum induced antibodies are key components of anti-malarial immunity in malaria endemic areas, but their antigen targets can be polymorphic. Induction of a high proportion of strain-specific antibodies will limit the recognition of a broad diversity of parasite strains by these responses. There are indications that circulating parasite diversity varies with malaria transmission intensity, and this may affect the specificity of elicited anti-malarial antibodies. This study therefore assessed the effect of varying malaria transmission patterns on the specificity of elicited antibody responses and to identify possible antibody correlates of naturally acquired immunity to malaria in children in an area of Ghana with seasonal malaria transmission. METHODS: This retrospective study utilized plasma samples collected longitudinally at six time points from children aged one to five years. Multiplex assays were used to measure antibody levels against four P. falciparum AMA 1 variants (from the 3D7, FVO, HB3 and CAMP parasite strains) and the 3D7 variant of the EBA 175 region II antigen and the levels compared between symptomatic and asymptomatic children. The relative proportions of cross-reactive and strain-specific antibodies against the four AMA 1 variants per sampling time point were assessed by Bland-Altman plots. The levels of antibodies against allelic AMA1 variants, measured by singleplex and multiplex luminex assays, were also compared. RESULTS: The data show that increased transmission intensity is associated with higher levels of cross-reactive antibody responses, most likely a result of a greater proportion of multiple parasite clone infections during the high transmission period. Anti-AMA1 antibodies were however associated with a history of infection rather than protection in this age group. CONCLUSION: The data contribute to understanding the underlying mechanism of the acquisition of strain-transcending antibody immunity following repeated exposure to diverse parasite strains.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Reações Cruzadas , Feminino , Gana/epidemiologia , Humanos , Imunoensaio/métodos , Lactente , Estudos Longitudinais , Malária Falciparum/epidemiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Estações do Ano
11.
PLoS One ; 12(8): e0183198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28817634

RESUMO

Malaria, a disease endemic in many tropical and subtropical regions, is caused by infection of the erythrocyte by the apicomplexan parasite Plasmodium. Host-cell invasion is a complex process but two Plasmodium proteins, Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck protein complex (RON), play a key role. AMA1, present on the surface of the parasite, binds tightly to the RON2 component of the RON protein complex, which is inserted into the erythrocyte membrane during invasion. Blocking the AMA1-RON2 interaction with antibodies or peptides inhibits invasion, underlining its importance in the Plasmodium life cycle and as a target for therapeutic strategies. We describe the crystal structure of the complex formed between AMA1 from P. vivax (PvAMA1) and a peptide derived from the externally exposed region of P. vivax RON2 (PvRON2sp1), and of the heterocomplex formed between P. falciparum AMA1 (PfAMA1) and PvRON2sp1. Binding studies show that the affinity of PvRON2sp1 for PvAMA1 is weaker than that previously reported for the PfRON2sp1-PfAMA1 association. Moreover, while PvRON2sp1 shows strong cross-reactivity with PfAMA1, PfRON2sp1 displays no detectable interaction with PvAMA1. The structures show that the equivalent residues PvRON2-Thr2055 and PfRON2-Arg2041 largely account for this pattern of reactivity.


Assuntos
Reações Cruzadas , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Animais , Ligantes , Ligação Proteica , Proteínas de Protozoários/metabolismo
12.
Front Immunol ; 8: 804, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744286

RESUMO

The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34-56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund's adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund's adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34-56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey's immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.

13.
PLoS One ; 11(10): e0164053, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695087

RESUMO

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading asexual blood stage vaccine candidate for malaria. In preparation for clinical trials, three Diversity Covering (DiCo) PfAMA1 ectodomain proteins, designed to overcome the intrinsic polymorphism that is present in PfAMA1, were produced under Good Manufacturing Practice (GMP) in Pichia pastoris. Using identical methodology, the 3 strains were cultivated in 70-L scale fed-batch fermentations and PfAMA1-DiCos were purified by two chromatography steps, an ultrafiltration/diafiltration procedure and size exclusion chromatography, resulting in highly pure (>95%) PfAMA1-DiCo1, PfAMA1 DiCo2 and PfAMA1 DiCo3, with final yields of 1.8, 1.9 and 1.3 gram, respectively. N-terminal determinations showed that approximately 50% of each of the proteins lost 12 residues from their N-terminus, in accordance with SDS-PAGE (2 main bands) and MS-data. Under reducing conditions a site of limited proteolytic cleavage within a disulphide bonded region became evident. The three proteins quantitatively bound to the mAb 4G2 that recognizes a conformational epitope, suggesting proper folding of the proteins. The lyophilized Drug Product (1:1:1 mixture of PfAMA1-DiCo1, DiCo2, DiCo3) fulfilled all pre-set release criteria (appearance, dissolution rate, identity, purity, protein content, moisture content, sub-visible particles, immuno-potency (after reconstitution with adjuvant), abnormal toxicity, sterility and endotoxin), was stable in accelerated and real-time stability studies at -20°C for over 24 months. When formulated with adjuvants selected for clinical phase I evaluation, the Drug Product did not show adverse effect in a repeated-dose toxicity study in rabbits. The Drug Product has entered a phase Ia/Ib clinical trial.


Assuntos
Variação Antigênica , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/biossíntese , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/biossíntese , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Feminino , Fermentação , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Estabilidade Proteica , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Controle de Qualidade , Coelhos , Proteínas Recombinantes
14.
Malar J ; 15(1): 442, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27577237

RESUMO

BACKGROUND: The safety and immunogenicity of PfAMA1, adjuvanted with Alhydrogel(®) was assessed in malaria-experienced Malian adults. The malaria vaccine, PfAMA1-FVO [25-545] is a recombinant protein Pichia pastoris-expressed AMA-1 from Plasmodium falciparum FVO clone adsorbed to Alhydrogel(®), the control vaccine was tetanus toxoid produced from formaldehyde detoxified and purified tetanus toxin. METHODS: A double blind randomized controlled phase 1 study enrolled and followed 40 healthy adults aged 18-55 years in Bandiagara, Mali, West Africa, a rural setting with intense seasonal transmission of P. falciparum malaria. Volunteers were randomized to receive either 50 µg of malaria vaccine or the control vaccine. Three doses of vaccine were given on Days 0, 28 and 56, and participants were followed for 1 year. Solicited symptoms were assessed for seven days and unsolicited symptoms for 28 days after each vaccination. Serious adverse events were assessed throughout the study. The titres of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed. RESULTS: Commonest local solicited adverse events were the injection site pain and swelling more frequent in the PfAMA1 group. No vaccine related serious adverse events were reported. A significant 3.5-fold increase of anti-AMA-1 IgG antibodies was observed in malaria vaccine recipients four weeks after the third immunization compared to the control group. CONCLUSION: The PfAMA1 showed a good safety profile. Most adverse events reported were of mild to moderate intensity. In addition, the vaccine induced a significant though short-lived increase in the anti-AMA1 IgG titres. Registered on www.clinicaltrials.gov with the number NCT00431808.


Assuntos
Antígenos de Protozoários/imunologia , Vetores Genéticos , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Pichia/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Hidróxido de Alumínio/administração & dosagem , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Método Duplo-Cego , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Masculino , Mali , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/efeitos adversos , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Adulto Jovem
15.
J Immunol ; 197(4): 1074-88, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412414

RESUMO

EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS. We report that B cells infected with EBV-related lymphocryptovirus (LCV) are requisite APCs for MHC-E-restricted autoaggressive effector memory CTLs specific for the immunodominant epitope 40-48 of myelin oligodendrocyte glycoprotein (MOG). These T cells drive the EAE pathogenesis to irreversible neurologic deficit. The aim of this study was to determine why LCV infection is important for this pathogenic role of B cells. Transcriptome comparison of LCV-infected B cells and CD20(+) spleen cells from rhesus monkeys shows increased expression of genes encoding elements of the Ag cross-presentation machinery (i.e., of proteasome maturation protein and immunoproteasome subunits) and enhanced expression of MHC-E and of costimulatory molecules (CD70 and CD80, but not CD86). It was also shown that altered expression of endolysosomal proteases (cathepsins) mitigates the fast endolysosomal degradation of the MOG40-48 core epitope. Finally, LCV infection also induced expression of LC3-II(+) cytosolic structures resembling autophagosomes, which seem to form an intracellular compartment where the MOG40-48 epitope is protected against proteolytic degradation by the endolysosomal serine protease cathepsin G. In conclusion, LCV infection induces a variety of changes in B cells that underlies the conversion of destructive processing of the immunodominant MOG40-48 epitope into productive processing and cross-presentation to strongly autoaggressive CTLs.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Encefalomielite Autoimune Experimental/virologia , Infecções por Herpesviridae/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/virologia , Western Blotting , Callithrix , Separação Celular , Encefalomielite Autoimune Experimental/imunologia , Epitopos de Linfócito T/imunologia , Imunofluorescência , Lymphocryptovirus , Ativação Linfocitária/imunologia , Macaca mulatta , Reação em Cadeia da Polimerase , Infecções Tumorais por Vírus/imunologia
16.
PLoS One ; 10(4): e0123567, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25886591

RESUMO

The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/química , Proteínas de Membrana/química , Plasmodium knowlesi/imunologia , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/imunologia , Sequência de Bases , Cristalografia por Raios X , Proteínas de Membrana/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Proteínas de Protozoários/imunologia
17.
PLoS One ; 10(4): e0124400, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881166

RESUMO

Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.


Assuntos
Antígenos de Protozoários/genética , Haplótipos/genética , Malária/genética , Proteínas de Membrana/genética , Mutação/genética , Plasmodium knowlesi/isolamento & purificação , Polimorfismo Genético/genética , Proteínas de Protozoários/genética , Seleção Genética/genética , Sequência de Aminoácidos , Humanos , Malária/parasitologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
18.
Infect Immun ; 81(5): 1479-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23429538

RESUMO

To overcome polymorphism in the malaria vaccine candidate Plasmodium falciparum apical membrane antigen 1 (PfAMA1), fusion protein chimeras comprised of three diversity-covering (DiCo) PfAMA1 molecules (D1, D2, and D3) and two allelic variants of the C-terminal 19-kDa region of merozoite surface protein 1 (MSP119) (variants M1 and M2) were generated. A mixture of fusion proteins (D1M1/D2M2D3) and the D1M1D2M2D3 fusion were compared to a single-unit mixture (D1/D2/D3/M1) in an immunological study in groups of rabbits. Following immunization, titers of antibodies (Abs) against four naturally occurring PfAMA1 alleles were high for all groups, as were growth inhibition assay (GIA) levels against two antigenically distinct laboratory parasite strains. Fusion of AMA1 to MSP119 did not suppress levels of antibodies against the AMA1 component. In addition, the breadth of antibody responses was unaffected. Anti-AMA1 antibodies were largely responsible for parasite growth inhibition, as shown in reversal-of-inhibition experiments by adding competing AMA1 antigen. For all groups, titration of the MSP119 antigen into the GIA led to only a small decrease in parasite inhibition, although titers of antibodies against MSP119 were increased 15-fold for the groups immunized with fusion proteins. GIA with affinity-purified anti-MSP119 antibodies showed that the 50% inhibitory concentrations of the anti-MSP119 antibody preparations were in the same order of magnitude for all animals tested, leading to the conclusion that fusing MSP119 to PfAMA1 leads to a small but significant increase in functional antibody levels. This study shows that combination of multiple vaccine candidates in fusion proteins may lead to improved characteristics of the vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Plasmodium falciparum/crescimento & desenvolvimento , Coelhos
19.
PLoS One ; 7(6): e38898, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768052

RESUMO

UNLABELLED: Plasmodium falciparum: apical membrane antigen 1 (AMA1) is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. The polymorphic nature of AMA1 may compromise vaccine induced protection. The humoral response induced by two dosages (10 and 50 µg) of a single allele AMA1 antigen (FVO) formulated with Alhydrogel, Montanide ISA 720 or AS02 was investigated in 47 malaria-naïve adult volunteers. Volunteers were vaccinated 3 times at 4 weekly intervals and serum samples obtained four weeks after the third immunization were analysed for (i) Antibody responses to various allelic variants, (ii) Domain specificity, (iii) Avidity, (iv) IgG subclass levels, by ELISA and (v) functionality of antibody responses by Growth Inhibition Assay (GIA). About half of the antibodies induced by vaccination cross reacted with heterologous AMA1 alleles. The choice of adjuvant determined the magnitude of the antibody response, but had only a marginal influence on specificity, avidity, domain recognition or subclass responses. The highest antibody responses were observed for AMA1 formulated with AS02. The Growth Inhibition Assay activity of the antibodies was proportional to the amount of antigen specific IgG and the functional capacity of the antibodies was similar for heterologous AMA1-expressing laboratory strains. TRIAL REGISTRATION: ClinicalTrials.gov NCT00730782.


Assuntos
Alelos , Antígenos de Protozoários/imunologia , Saúde , Imunidade Humoral/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adulto , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Antígenos de Protozoários/sangue , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/classificação , Imunoglobulina G/imunologia , Malária Falciparum/sangue , Malária Falciparum/prevenção & controle , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Proteínas de Protozoários/sangue , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Titulometria , Vacinação , Adulto Jovem
20.
PLoS Pathog ; 8(6): e1002755, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737069

RESUMO

Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.


Assuntos
Antígenos de Protozoários/química , Interações Hospedeiro-Parasita/fisiologia , Proteínas de Membrana/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/metabolismo , Membrana Celular/metabolismo , Cristalização , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas de Protozoários/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...